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Summary  

While Alzheimer’s disease (AD) is the most common cause for dementia among older 
individuals 1,2 and the primary goal of ADNI, the lifetime risk for stroke equals and may exceed 
the risk of AD in some circumstances 3.  In addition, MRI evidence of asymptomatic 
cerebrovascular disease (CVD) occurs in one-third of older individuals 4.  In community based 
studies, mixed pathologies account for the most common cause of dementia 5 and the impact of 
cerebrovascular and AD pathology is additive, particularly when the AD pathological burden is 
mild 6.  Similarly, MRI community based studies have shown that white matter hyperintensities 
(WMH) increase with advancing age and associated vascular risk factors 4,7 and are associated 
with an array of cognitive deficits in cross-sectional studies 8-10.  Similar cross-sectional 
differences are also seen with clinically silent brain infarctions noted on MRI 4,11,12.  Importantly, 
community based studies show that both WMH and SBI are associated with cognitive decline 
and incident MCI and dementia 13,14.   
 
These results strongly suggest that vascular brain injury (WMH, SBI) occurs commonly amongst 
older community dwelling cognitively normal individuals and is associated with subtle cognitive 
impairment, including memory impairment.  Importantly, increasing survival from vascular 
disease including hypertension, diabetes, myocardial infarction and stroke is likely to increase 
the prevalence of asymptomatic vascular brain disease thereby increasing the public health 
consequences of cognitive impairment related to these disorders.  Furthermore, the age of onset 
of these diseases is quite early and cognitive effects appear to begin similarly early in life, 
possibly before age 60 10,14,15.   
 

Method  

WMH Measurement 
For ADNI 2, our WMH measurement approach is based a Bayesian approach to segmentation of 
high resolution 3D T1 and FLAIR sequences.  In brief, non-brain structures are excluded from 
the 3D T1 images prior to measurement using an automated atlas based method.  The FLAIR 
image is the affined transformed to the 3DT1 image using the FLIRT method from the FSL tool 
box, with error estimation based on correlation ratio.  Inhomogeneity correction of the 3D T1is 
performed using interleaved bias estimation and B-Spline deformation with a template16. This 
multiple iteration method updates a B--spline intensity deformation between an unbiased 
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template image and the subject image with an estimation of a bias field based on the current 
template--to--image alignment. The bias field is modeled using a spatially smooth thin--plate 
spline interpolation based on ratios of local image patch intensity means between the deformed 
template and subject images.  FLAIR inhomogeneity corrections after co-registration of the 
FLAIR to the 3D T1 image is based on a previously published local histogram normalization 
method17.  Prior to WMH calculation, each 3D T1 image is non-linearly aligned to a common 
template atlas and each of the accompanying images are transformed onto the same atlas using 
the same transformation parameters. 
 
 
 

 
 
Estimation of WMH is then performed using a modified Bayesian probability structure based on 
a previously published method of histogram fitting 18.  Prior probability maps for WMH were 
created from more than 700 individuals with semi-automatic detection of WMH followed by 
manual editing.  Likelihood estimates of the native image are calculated through histogram 
segmentation and thresholding.   All segmentation is initially performed in standard space 
resulting in probability likelihood values of WMH at each voxel in the white matter (Figure 1).  
These probabilities are then thresholded at 3.5 sd above the mean to create a binary WMH mask.  
Segmentation is based on a modified Bayesian approach that combines image likelihood 

Figure 1 WMH Segmentation Pipeline 
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estimates, spatial priors and tissue class constraints.  The segmented WMH masks are then back-
transformed in to native space for tissue volume calculation.  Since image segmentation occurs 
in a common template space, group statistics using previously reported methods19-21 can be 
applied.  
 
Gray, White and CSF Measurement 
The primary segmentation mechanism is an Expectation-Maximization (EM) algorithm that 
iteratively refines its segmentation estimates to produce outputs that are most consistent with the 
input intensities from the native-space T1 images and a model of image smoothness 22,23.  Like 
all EM algorithms, the system must be initialized with a reasonable estimate. We produce this 
initial estimate from the template-space warps used for WMH detection; because locations of 
WM/GM/CSF tissues are known in the template space, transforming these masks back to the 
each image’s native space produces rough estimate 3-tissue segmentations (Figure 2). We then 
calculate the mean and standard deviation of the image intensities in locations labeled as each 
tissue type, and in the main segmentation method these values form the initial parameters for a 
Gaussian model of image intensity for each class.  At each iteration, the segmenter uses a 
Gaussian model of T1-weighted image intensity for each tissue class, in order to produce a 
segmentation. In the first iteration, these models are estimated as described above. The 
segmentation yielded by these appearance models alone is then refined using a Markov Random 
Field (MRF) model, a computational statistical method that efficiently produces a label map 
consistent with both the input intensities and image smoothness statistics. Inference in the MRF 
is computed using an adaptive priors model23. This refined segmentation from the MRF is then 
used to compute new Gaussian intensity models for each tissue class, and the algorithm repeats, 
iteratively switching between calculating Gaussian appearance models and MRF-based 
segmentation, until convergence. The MRF-based segmentation at the final iteration is used as 
the final output segmentation.  
 
Final Four Tissue Segmentation 
Final four tissue segmentation consists of substitution of voxels within the three tissue 
segmented image with voxels identified as WMH from the automatic WMH segmentation 
algorithm.  Results are reported in native space as volumes in cubic centimeters.  Total 
intracranial volume based on automatic segmentation is also included (Figure 2). 

Robustness 

Irregularities and variance in image intensities are corrected for in preprocessing by the best 
available methods. WMHs, a difficult problem for many similar segmenters, are detected using a 
dedicated specialized method to ensure their proper handling. While the method is sensitive to 
being given poor quality initial estimates, those we use are generated in a very sophisticated and 
robust automated fashion. The mathematical methods used are both state of the art and strongly 
validated. 
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Figure 2 Three and Four Tissue Segmentation 
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