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Summary (or Abstract) [200 words max] 
Tensor-based morphometry (TBM) is an image analysis technique that measures brain structural 
differences, cross sectional differences or changes over time in repeat scans, from the gradients 
of deformation fields that align one image to another. TBM may be applied to cross-sectional 
MRI data for local volumetric comparisons, based on nonlinearly registering individual brain 
scans to a common anatomical template (cross-sectional TBM). When TBM is applied in a 
longitudinal MRI study, a change map is computed by nonlinearly registering a follow-up scan 
to a baseline scan from the same individual (longitudinal TBM). TBM-derived measures of brain 
atrophy, reflecting the rate of tissue loss, can be used as an imaging surrogate biomarker to 
facilitate clinical trials. Care must be taken that the analysis methods are symmetric and free 
from multiple sources of bias [1]. Our method has been tuned to handle poorer quality scans 
robustly, i.e., it does not require the throw-out of scans, as a real clinical trial would not allow the 
selective exclusion of data. 

Method  
Methods for the cross-sectional TBM [2, 3] and the improved longitudinal TBM [1] are 
summarized below. Numerical summaries of cumulative temporal lobe atrophy are only 
available for longitudinal TBM. 
 
Image Download 
MR scans (1.5T or 3T) were downloaded from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) public database (http://adni.loni.ucla.edu/). Downloaded images had been processed 
with the standard Mayo Clinic processing pipeline, identified with the term “scaled” (ADNI-1) 
or “MT*” (ADNI-GO/2) in the file name. 
 
Image pre-processing 
To adjust for linear drifts in head position and scale within the same subject, the follow-up scan 
was linearly registered to its matching screening scan using 9-parameter (9P) registration, driven 
by a mutual information (MI) cost function [4]. 9P linear registration was chosen to correct for 
scanner voxel size variations in large longitudinal studies and any residual scaling errors after 
phantom-based image correction. Additionally, to account for global differences in brain scale 
across subjects, the mutually aligned time-series of scans was then linearly registered to the 
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International Consortium for Brain Mapping template (ICBM-53) [5], applying the same 9P 
transformation to both mutually aligned scans. Intermediate transformation matrices were 
concatenated into a single transformation file so that both screening and follow-up scans were 
resampled once during the linear registration (see [6] on the need for equivalent resampling of 
both images to avoid one source of bias in analyzing longitudinal data). Globally aligned images 
were re-sampled in an isotropic space of 220 voxels along x-, y- and z-dimensions with a final 
voxel size of 1 mm3. 
 
Average group template - minimal deformation target (MDT)  
A minimal deformation target (MDT) was created from the scans of 40 randomly selected 
normal subjects to serve as an unbiased average template image [7] (Figure 1). To construct an 
MDT, we first created an initial affine average template by taking a voxel-wise average of the 9P 
globally aligned scans after intensity normalization. Next, a non-linear average template was 
built after warping individual brain scans to the affine template [8, 9]. The above steps were 
repeated until a full-resolution image registration was achieved. Lastly, the MDT was generated 
by applying inverse geometric centering of the displacement fields to the non-linear average [10, 
11].  

  
 
Cross-sectional TBM  
To quantify 3D patterns of volumetric brain differences, all individual screening images (N=817) 
were aligned to the MDT, using a non-linear inverse consistent elastic intensity-based 
registration algorithm [12], which optimized a joint cost function based on mutual information 
(MI) and the elastic energy of the deformation. A Jacobian matrix field was derived from the 
gradients of the deformation field that aligned an individual brain to the MDT template. The 
determinant of the local Jacobian matrix was derived from the forward deformation field to 
characterize local volume differences, with a Fast Fourier Transform (FFT) resolution of 
32x32x32; this corresponds to an effective size of 6.875 mm (220 mm / 32 = 6.875 mm) in each 
of the x-, y-, and z- dimensions. Color-coded Jacobian determinants were used to illustrate 

regions of volume expansion, i.e. those with ( ) 1det >rJ , or contraction, i.e., ( ) 1det <rJ  [13-18] 
relative to the normal group template. As all images were registered to the same template, these 
Jacobian maps share a common anatomical coordinate defined by the MDT template.  
 
Longitudinal TBM  
In the improved TBM [1], we added a step to generate brain masks and remove the image 
background before longitudinal nonlinear registrations. Image background removal or skull 
stripping improves the precision of longitudinal TBM, where subtle changes are detected as 

Figure 1: High-resolution average group template 
– the ‘minimal deformation’ target (MDT). The 
MDT is shown here using the radiological 
convention (with slices at x=140, y=110, z=110, 
in a coordinate system whose image centroid is at 
(110,110,110)). 
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subject’s brain degenerates over time; it is however unnecessary for cross-sectional TBM, where 
large changes inside the brain are expected when aligning individual brains across the subjects. 
 
Brain masks that exclude skull, other non-brain tissues, and the image background were 
generated automatically using a parameter-less robust brain extraction tool (ROBEX) [19]. 
Separate ROBEX masks were created for mutually aligned screening and follow-up scans in the 
ICBM space. A joint mask was then created using the union of two masks, followed by 2 
iterations of morphological dilation using the mean dilation tool in FSLMATHS 
(http://www.fmrib.ox.ac.uk/fsl/avwutils/index.html), to ensure that all brain tissues were 
included. Finally, we applied the dilated joint mask to uniformly “skull-strip” the screening and 
9P registered follow-up scans, which were later used to compute the longitudinal change maps, 
or Jacobian maps.  
 
Individual Jacobian maps were created to estimate 3D patterns of structural brain change over 
time by warping the 9P-registered and ‘skull-stripped’ follow-up scan to match the 
corresponding screening scan, using the same non-linear inverse consistent elastic intensity-
based registration algorithm [12]. The deformation field was computed using a FFT resolution of 
64x64x64. This corresponds to an effective voxel size of 3.4 mm in the x, y, and z dimensions 
(220 mm / 64 = 3.4 mm). These longitudinal maps of tissue change were also spatially 
normalized across subjects by nonlinearly aligning all individual Jacobian maps to a MDT, for 
regional comparisons and group statistical analyses.  
 
Numerical summaries of cumulative temporal lobe atrophy  
To derive a single-number summary of the 3D map of brain atrophy for each subject, a single 
numerical measure was derived by computing an average within a region-of-interest (ROI). Both 
anatomically and statistically-defined ROIs were used. First, a temporal lobe ROI (temp-ROI), 
including the temporal lobes of both brain hemispheres, was manually delineated on the MDT 
template by a trained anatomist using the Brainsuite software (version 2.11) [20]. Secondly, a 
statistically-defined ROI (stat-ROI) was defined based on voxels with significant atrophic rates 
over time (p < 0.00001) within the temporal lobes, in a non-overlapping training set of 20 AD 
patients (age at baseline: 74.8±6.3 years; 7 men and 13 women) scanned at baseline and 12-
month.  
 
We computed numerical summaries of the 3D Jacobian map to estimate the amount of 
cumulative temporal lobe atrophy, by taking an average within the stat-ROI or temp-ROI. For 
the 20 AD patients selected to create the stat-ROI, we used a leave-one-out strategy so that they 
could all be included in the final analysis (i.e., 19 AD patients were used for creating a stat-ROI, 
which was used to derive a numerical summary for the left-out subject, and this process was 
repeated by leaving out each of the other subjects).  The numeric summaries represent the overall 
amount of cumulative temporal lobe atrophy during an observation time of 6, 12, 18, 24, and 36 
months respectively.  
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Version Information  
This document supersedes our previous document dated [June 03, 2009].  Specific changes in 
our methods are summarized in this section. In addition to adding more subjects, we 
implemented two major changes in the recent longitudinal TBM analyses: (1) brain masks were 
generated and used to exclude non-brain tissues and the image background, prior to nonlinear 
registration; (2) prior versions used a nonlinear registration algorithm using the symmetrized 
Kullback-Leibler distance to regularize the deformation, also known as “sKL-MI”. In the current 
version, sKL-MI was replaced with the non-linear inverse consistent elastic intensity-based 
registration algorithm [12], also known as “3DMI”. Therefore, both cross-sectional and 
longitudinal TBM were processed with 3DMI, at different FFT resolutions, in the new uploads.  
 
Dataset Information 
This methods document applies to the following dataset(s) available from the ADNI repository: 
 
Dataset Name Date Submitted 
Thompson Lab – Cross-sectional and longitudinal tensor-based 
morphometry Version 2.0 

1 October 2012 
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