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Biomarkers Consortium CSF Proteomics Project 

1. Background 

The data and analysis plan described within this document represents the work of the FNIH Biomarkers 

Consortium Project “Use of Targeted Mass Spectrometry Proteomic Strategies to Identify CSF-Based 

Biomarkers in Alzheimer’s Disease”. This project was submitted to the Biomarkers Consortium 

Neuroscience Steering Committee by a subgroup of the Industry Private Partner Scientific Board (PPSB) 

of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) for execution and was managed by a 

Biomarkers Consortium Project Team that includes members from academia, government and the 

pharmaceutical industry. Funding for this project was provided by Genentech (a member of the Roche 

Group), Janssen, Lundbeck, Merck, and Takeda. This project is the second part of a multi-phased effort 

seeking to utilize samples collected by ADNI to qualify multiple peptides in cerebrospinal fluid (CSF) to 

diagnose patients with Alzheimer’s disease (AD) and monitor disease progression. These efforts were 

reviewed by the ADNI Resource Allocation Review Committee (RARC) and approved by the National 

Institute on Aging (NIA).  An earlier phase of the program focused on using a multiplexed immuno-based 

assay (performed by Rules Based Medicine) to characterize potential AD biomarkers in CSF. 

The aim of this project was to determine the ability of a panel of peptides measured by mass spectrometry 

to discriminate among disease states and show changes in a longitudinal manner.  Additional biomarkers 

with diagnostic and prognostic value are needed for AD drug development, especially in the context of 

clinical trials aiming to treat patients before the onset of dementia.  In addition, biomarkers that can be 

used to monitor treatment effects in both early and established AD clinical trials could enable more 

efficient trial designs and facilitate understanding of therapeutic mechanism of action.  A full description 

of the LC/MS-MRM approach to biomarker quantitation is beyond the scope of this Primer but an overview 

with key references is provided in Section 2.  

The CSF multiplex MRM panel was developed by Caprion Biosciences in collaboration with the 

Biomarkers Consortium Project Team.  Proteins and peptides were selected based upon their previous 

detection in CSF, relevance to AD, and previous results from the Rules Based Medicine (RBM) multiplex 

immunoassay analysis of ADNI CSF.  From previous work, 5 primary targets were selected for absolute 

quantitation (FABPH, SCG2, VGF, NPXT2 and CHGA) and 121 targets were monitored for relative 

quantitation. As described in more detail below, CSF samples were digested, and analyzed by LC-MS/MS 

operating in MRM mode at Caprion Biosciences Inc.  The final MRM panel consisted of 278 peptides 

representing 126 proteins and, for each peptide, two mass transitions were monitored. For the 5 absolute 

quantitation targets a concentration was reported using a single quantifier transition back calculated on 

a curve prepared from recombinant protein. These results are reported in arbitrary signal intensity units 

on a natural log scale. Because alternate splicing or post-translational processing could result in 
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biologically significant differences in the levels of two peptides from the same protein, the use of the “log 

peptide intensity” is recommended for further analysis.   

Stable isotope-labelled (SIL) peptides were synthesized for all peptides monitored in this study.  These 

peptides were used for method development and as normalizers for the study.  Sample analysis batches 

include standard curve and quality control samples.  

Seven hundred and fifty (750) unique frozen CSF samples were received at Caprion. These were 

composed of 730 longitudinal samples from the ADNI-1, ADNI-2 and ADNI-GO studies, and 20 blinded 

replicate aliquots, one each for 20 subjects in the study.  The 20 blinded replicates were distributed 

throughout the MS analysis runs and used to assess assay reproducibility.   

Caprion initially defined and performed the QC and processing steps described below.  All work described 

in this primer was performed before the sample ID’s were un-blinded to reveal the corresponding ADNI 

subject IDs.  The Project Team also pre-defined a Statistical Analysis Plan for initial analysis of these 

biomarkers for diagnostic and prognostic utility (Appendix I).  The Project Team will conduct this analysis 

once they are un-blinded, which occurs simultaneously with the posting of the un-blinded data to the 

LONI website.  The Project Team intends to report results of the Statistical Analysis Plan through 

conferences and/or publications. 

2. Description of Technology 

MRM allows the specific and sensitive quantification of peptides and proteins in biological samples. It is 

the most sensitive mass spectrometry-based platform (Lange et al., 2008; Mol. Syst. Biol. 4, 222) and 

was demonstrated to be highly reproducible within and across laboratories and instrument platforms 

(Addona et al., Nat Biotechnol. (2009) (27) 633; Kennedy et al., Nat Methods (2014) (11) 149; Geyer et. 

Al, (2017), Mol Sys Biol. (13) 942). MRM experiments are performed on triple quadrupole (QQQ) mass 

spectrometers. Peptide ions are isolated in the first quadrupole (Q1), ions are fragmented in the second 

Q by collision induced dissociation (CID), characteristic fragments ions isolated in the third Q, and then 

monitored and quantified.  Up to 750 peptides, covering a dynamic range of 5 orders of magnitude can 

be quantified in a single 30 min run. The samples in this study were analyzed on two QTRAP 6500 mass 

spectrometers (AB Sciex).  

3. Sample Randomization and Blinding 

The original study randomization was performed by Dr. Shaw’s group at UPenn and was based on a 

sample processing workflow including CSF depletion. The 750 CSF samples were split into groups of 36 

samples with all longitudinal samples from an individual contained within the same group (called run01, 

run02 etc. by UPenn).  Eleven (11) runs were planned to be depleted using one IgY14/Supermix depletion 

column and ten (10) runs were to be depleted using a second depletion column.  

Through subsequent assay development work, the depletion steps were deemed unnecessary and 

eliminated and the new sample processing workflow was designed with four runs on two Q-TRAP 6500 
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instruments. The groups and order of injection from the initial randomization (which assumed the use of 

depletion columns) were maintained and divided between the four runs as described in Table 1. 

Table 1. Linking of sample run with randomization blocks. The (depletion column x) designation is included only to reflect that 
they were used in the design of the randomization although they were not used in the final processing workflow. 

Caprion 

Run 

Batch 

size 

QTRAP 

Instrument 

UPenn randomization designation 

Run 01  186 U run01-run05 (depletion column 1) 

Run 02 186 Z run06-run10 (depletion column 1) 

Run 03 180 U run11 (depletion column 1) and run01-run04 (depletion column 2) 

Run 04 222 Z run05-run10 (depletion column 2) 

 

 All project team members remain blinded to the participant IDs in ADNI. Thus, experimental data 

cannot be linked to demographic, clinical or other biomarker data for the participants until the 

experimental data is uploaded to the ADNI website. 

4. Sample Processing and MRM Analysis Overview 

The  flow chart presented in Figure 1 describes the main steps of the entire process for sample 

analysis.  Each of these steps is described herein.   

CSF Sample Processing Method 

Seven hundred and fifty (750) unique samples were included in this study. Sample aliquots were shipped 

to Caprion on dry ice and stored at -80˚C until use. Due to the presence of endogenous proteins in CSF 

and the difficulty of sourcing CSF with low levels of the 5 absolute quantitation targets, standard curve 

samples were prepared using recombinant proteins (CMGA, SCG2, VGF, NPTX2, FABPH) in a BSA 

fortified buffer (0.2 mg/mL BSA). Quality control (QC) samples were prepared in a CSF pool comprised 

of 300 individual donors, representative of the study samples, supplied by ADNI and prepared in 

Caprion’s facilities. Aliquots of the standard and QC samples were frozen at -80°C until use. 

The 750 study samples were processed in 4 batches, with longitudinal samples from each individual 

subject processed in the same batch. After thawing, 50µL of each sample was denatured with 

trifluoroethanol (Sigma) followed by proteolytic digestion with trypsin (Promega) at an approximate 1:25 

protease to protein ratio. The samples were then acidified with trifluoroacetic acid and SIL peptides spiked 

in. The peptides were desalted using Oasis MCX desalting plates (Waters) and aliquoted into two 

replicate mass spectrometry (MS) plates which were dried by vacuum evaporation and stored at -20°C 

prior to MS analysis. 
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Two mass spectrometers were used in the analysis of the samples. Runs 01 and 03 were analyzed on 

one instrument (QTRAP U) while runs 02 and 04 were analyzed on a separate instrument (QTRAP Z). 

Prior to analysis, the two mass spectrometers were cross-validated by testing the backup plates from 3 

precision and accuracy runs. 

Each processing batch consisted of:  

1. Standard curves (8 non-zero levels, plus blank) in duplicate;  

2. Quality control (QC) samples in CSF pool (3 non-zero levels) in triplicate; 

3. CSF pool spiked with SIL peptides in replicates of 6 (to determine endogenous levels); 

4. Reference LLOQ samples in triplicate; 

5. Double blanks and carryover blanks,  

6. Samples for use during retention time correction and system suitability test (SST) of the LC-MS 

7. 180-222 study samples 

Note: Standard and QC samples were prepared using recombinant proteins for the 5 absolute 

quantitation targets only. SIL peptides used as internal standards and for relative quantitation were 

added during processing as described in Figure 1. 
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Figure 1: Processing workflow 
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MRM Analysis of CSF Samples 

The multiplexed MRM panel used in this project consisted of 268 peptides targeting 121 relative 

quantitation protein targets as well as 10 peptides targeting 5 proteins (FABPH, SCG2, VGF, NPTX2 and 

CHGA) which were selected for absolute quantitation. These targets were selected based on previous 

work with the Biomarkers Consortium. For each of the 278 peptides, a synthetic SIL peptide was ordered 

and used as internal standard during the analysis. 

Absolute quantitation was performed using the surrogate peptide approach. A single peptide/transition 

was used for quantitation and was selected based on the following criteria: sensitivity, chromatographic 

performance, lack of interference, linearity, precision, and accuracy.  

Commercial CSF samples were sourced and processed in-parallel with standard curve and QC samples 

to assess the range of endogenous concentrations of the target proteins. Peptide selection criteria are 

outlined in Table 2. Standard curve and QC levels were adjusted to reflect the measured endogenous 

levels. Peptides with sufficient sensitivity at the lower limit of quantitation (LLOQ) level were assessed for 

linearity and accuracy through the curve range. Interference, defined as a non-specific signal at the 

retention time of the peptide, was assessed in BSA buffer. To assess interference in CSF, the transition 

area ratio and peak shape of the endogenous peptide was compared to that of the SIL peptide. Precision 

was assessed for CSF QCs, as the use of a surrogate matrix for the curve precludes an assessment of 

true accuracy in CSF. Finally, carryover was assessed in BSA by injecting a blank sample immediately 

following the upper limit of quantitation (ULOQ) sample. Two peptides per protein meeting the criteria 

were kept, and the peptide showing the best overall performance used as quantifier. 

Table 2:  Peptide selection criteria. 

  Criteria 

Parameter Endogenous transitions SIL transitions* 

Linearity R > 0.98 N/Ap 

Accuracy of standard levels <25% bias, <30% at LLOQ N/Ap 

Interference in blank BSA 
sample 

<20% of LLOQ peak area <5% of SIL peak area 

Interference in CSF pool 
sample 

Match SIL peak area ratio, peak 
shape 

N/Ap 

Signal/Noise ratio >5:1 at LLOQ N/Ap 

Reproducibility CV of peak area ratio in ULOQ samples <20% 

Carryover <20% of LLOQ peak area <5% of SIL Peak area 

* SIL criteria differ from endogenous as the signal intensity is uniformly high 

 

Selecting a single, well characterized, peptide/transition as quantifier avoids discrepancies in reported 

concentrations between peptides and ensures reproducibility between analytical runs. A second 
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transition was monitored for QC purposes. A second peptide was monitored for trouble shooting purposes 

only. 

Relative quantitation was performed using the peak area ratio of the analyte/SIL peptides. Data treatment 

and quality control for relative quantitation are described in detail below. 

Prior to analysis, retention time correction was performed on a naive CSF pool sample spiked with SIL 

peptides to ensure analyte peaks fell within the retention time window used during analysis. Subsequently 

a system suitability test (SST) was performed to assess sensitivity, repeatability, interference and 

carryover of the LC-MS system. The SST was performed as follows: 

1. One blank injection, to assess interference 

2. One lower limit of quantitation (LLOQ) sample, to assess sensitivity 

3. Three upper limit of quantitation (ULOQ) samples, to assess repeatability 

4. Two carryover blanks, to assess carryover  

These samples were prepared in BSA buffer as the signal of the endogenous proteins in CSF precluded 

the use of CSF. System suitability criteria are described in Table 2a and are assessed for the 5 absolute 

quantitation transitions used as quantifiers, Table 2b.  

 

Table 2a:  SST criteria. 

 Criteria 

Parameter Endogenous transitions SIL transitions* 

Interference in Blank sample <20% of LLOQ peak area <5% of SIL peak area 

Signal/Noise ratio >5:1 at LLOQ N/Ap 

Reproducibility CV of peak area ratio in ULOQ samples <20% 

Carryover <20% of LLOQ peak area <5% of SIL Peak area 

* SIL criteria differ from endogenous as the signal intensity is uniformly high 

 

  



  

Page 8 of 32 

 

 

Table 2b: Quantifier transitions. 

Protein Peptide Transition 1 (T1) Transition 2 (T2) 

CMGA EDSLEAGLPLQVR 713.88 612.4 

FABP3 SLGVGFATR 454.26 707.4 

VGF VLEYLNQEK 568.30 923.5 

NPTX2 TNYLYGK 429.72 643.4 

SCG2 THLGEALAPLSK 618.85 444.3 

 

Sample analysis was initiated after a successful system suitability test run. The samples were injected 

by processing batch. The processed samples were re-solubilized with 10 µL of a reconstitution solution 

containing 5 internal standard peptides (ISP) each at 100 ng/mL. These 5 ISP elute at different retention 

times during the chromatographic gradient and are used to monitor instrument performance during 

sample analysis. Seven (7) µL of material was injected, per sample, onto a NanoAcquity UPLC (Waters) 

coupled to a 6500 QTRAP mass spectrometer (AB Sciex). Peptide separation was achieved using a 500 

µm x 10 mm, 2.7 µm particle size Halo Peptides ES C18 column (Canada Life Science). The LC gradient 

used is shown in Table 3. The flow rate was 18 µL/min. 

 

Table 3: Liquid Chromatography (LC) gradient. 

Time %A * %B ** 

Initial 92.5 7.5 

0.2 92.5 7.5 

25 72 28 

25.6 40 60 

26.6 40 60 

26.61 92.5 7.5 

* Eluent A: Water:dimethylsulfoxide (DMSO) 97:3v/v, +0.2% Formic Acid 

** Eluent B: Acetonitrile:DMSO 97:3 v/v, + 0.2% Formic Acid 
 

Assay performance was monitored per injection batch using pre-defined acceptance criteria which were 

outlined in the study plan.  
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MRM Measurement Quality for Relative Quantitation Targets 

During peak integration of the MRM raw data, each transition was evaluated to assess measurement 

quality (ex. signal-to-noise ratio, presence of interference, etc.). Based on these quality filters, transition 

light-to-heavy peak area ratio values were flagged in the corresponding filtered datasets as follows: 

• Values replaced by 0: reported if both light transitions were not detected above the limit of detection 

(LOD). The LOD is defined as 3 S/N (3 times signal-to-noise ratio) and was based on peak height. 

• Values replaced by NA: reported for a peptide if a signal above the LOD was detected but at least 

one of the following conditions was met: 

o The signal of at least one of the 2 transitions of the heavy peptide was below 3 S/N 
o The transitions light-to-heavy ratios did not co-elute 
o The light-to-heavy ratio of transition #1 and the light-to-heavy ratio of transition #2 differed by 

more than 60% 
 

5. Statistical Analysis 

Definitions 

PQC samples: Process Quality Control samples are replicates of a pooled sample, similar to the study 

samples, and used to monitor reproducibility of sample processing and analysis. 

LH: ratio of the light peptide (endogenous) transition area over its heavy (SIL) counterpart, for each 

transition. Samples for which the heavy peptide transitions are not detected will not be considered. 

Missing Peak: LH replaced by a missing value (NA). Such values will be treated as “missing at random” 

during the statistical analysis.  

Reliable Peak: Measurements that passed all quality filters during peak integration (i.e. LH not replaced 

by 0 or NA) are considered as reliable. 

Detection Rate: Calculated for each transition, it is the proportion of reliable samples. The detection rate 

calculation is calculated among all study samples and stratified by status. 

Boxplot: A graphical display of sample distribution characterized by a box and whiskers. Boxes are 

delimited at the top by the third quartile (Q3) and at the bottom by the first quartile (Q1). The thick black 

line within a box represents the median (Q2). Whiskers extend to the most extreme data point which is 

no more than 1.5 times the interquartile range (Q3-Q1) from the box.  

Barplot: A graphical display characterized by a bar for each level of interest. An example of level of 

interest is sample ID. The height of the bar represents the characteristic of interest to display. 

Scatterplot: A graphical display to visualize the relationship between two numerical variables. A 

scatterplot consists of a series of points on a two-dimensional plot where the two axis positions are 

determined by the values of the variables of interest.  

 

Data Transformation for Outliers and Pattern Detection 

For LH values that were replaced by 0, this replacement was considered as a flag and not as a value to 

use for analysis. The original peak integration value was used for analysis. 
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Unless mentioned otherwise, base-2 log of LH, referred to as log-LH, was used for the statistical analyses. 

To avoid issues with taking the logarithm of 0, 1 was added to light areas before division by heavy areas. 

Values replaced by NA as described above were propagated to these re-calculated ratios. 

Outliers and Pattern Detection  

The impact of various sample processing steps was evaluated. The sample processing variables (SPVs) 

included: 

• Digestion (plate ID and well position) 

• Mass spectrometer (instrument, plate ID and well position) 

• Analytical run 

• Order of injection, to monitor sensitivity loss 

 

Relative Quantitation Data Set 

Signal from SIL peptides was investigated for each transition to ensure sufficient detection. Transitions 

with a large proportion of samples with low signal were excluded from the analysis.  The following 34 

transitions (ordered alphabetically) were excluded from further analyses because they were detected in 

no samples, study or PQC: 

  

A4_HUMAN.WYFDVTEGK.y7+ 

A4_HUMAN.WYFDVTEGK.y8+ 

AFAM_HUMAN.FLVNLVK.b2+ 

ALDOA_HUMAN.ALQASALK.b3+ 

ALDOA_HUMAN.ALQASALK.y6+ 

CD44_HUMAN.EQWFGNR.y3+ 

CD44_HUMAN.EQWFGNR.y4+ 

CNTP2_HUMAN.HELQHPIIAR.y3+ 

CNTP2_HUMAN.HELQHPIIAR.y5+ 

CO2_HUMAN.DFHINLFR.b3+ 

CO2_HUMAN.DFHINLFR.y5+ 

FAM3C_HUMAN.SPFEQHIK.y3+ 

FAM3C_HUMAN.SPFEQHIK.y6+ 

FMOD_HUMAN.IPPVNTNLENLYLQGNR.y5+ 

FMOD_HUMAN.IPPVNTNLENLYLQGNR.y6+ 

KLK10_HUMAN.ALQLPYR.b3+ 

KLK10_HUMAN.ALQLPYR.y4+  

LIGO1_HUMAN.ATVPFPFDIK.y5+ 

LIGO1_HUMAN.ATVPFPFDIK.y7+ 

PON1_HUMAN.SFNPNSPGK.y6+ 

PON1_HUMAN.SFNPNSPGK.y7+ 

PRDX1_HUMAN.ADEGISFR.y5+ 

PRDX3_HUMAN.HLSVNDLPVGR.b2+ 

PRDX3_HUMAN.HLSVNDLPVGR.y4+ 

PRDX6_HUMAN.LIALSIDSVEDHLAWSK.y4+ 

PRDX6_HUMAN.LIALSIDSVEDHLAWSK.y8+ 

SHSA5_HUMAN.KFVWSEER.y5+ 

SHSA5_HUMAN.KFVWSEER.y6+ 

SORC3_HUMAN.AVASQWPEELASAR.y4+ 

SORC3_HUMAN.AVASQWPEELASAR.y8+ 

TTHY_HUMAN.TSESGELHGLTTEEEFVEGIYK.y5+ 

TTHY_HUMAN.TSESGELHGLTTEEEFVEGIYK.y7+ 

VTDB_HUMAN.EFSHLGK.y3+ 

VTDB_HUMAN.EFSHLGK.y5+ 

 

An investigation to identify poorly detected samples was conducted.  Figure 2 shows the per-sample 

transition detection rate of each sample separately for PQC samples, study samples, and study sample 

replicates in the relative quantitation data set. In study samples, almost 95% of the transitions targeted 

were detected. 
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Figure 2: Per-sample relative-quantitated transition detection rate. 

 

 

Because technical replicates of study samples were included in this dataset, it was possible to assess 

the degree of non-biological technical variability by comparing intensities of replicates to their study 

sample pair mate. For each transition, the mean %CV between replicates and their study sample pair 

mate was calculated. The mean across all transitions of this average %CV was 16.3%. 95% of transitions 

had a mean %CV between 10.4% and 28.1%. 

 

Per sample averages of transitions were examined with regard to the SPVs, using boxplots and 

scatterplots. In addition, per sample average of reliable transition peaks was also examined. Both were 

performed for light areas, heavy areas and LH ratios, and independently for PQC samples, study samples 

and study sample replicates. This investigation allowed the identification of samples that did not behave 

like the others, on average (low detection included), and may pinpoint problematic sample processing 

steps.  

While heavy areas were uncharacteristically large for samples run in the first half of analytical run 2, no 

samples were identified as log-LH outliers by these analyses. Nonetheless, some sample processing 

variables, such as digestion plate ID and analytical run, appeared to have an impact on average log-LH 

values by visual inspection. Figure 3 illustrates average transition intensities as a function of digestion 

plate ID in the relative quantitation data set. This figure demonstrates that while digestion plates had an 

effect on average light and heavy peptide peak areas, the average light-to-heavy area ratio remained 



  

Page 12 of 32 

 

relatively stable throughout the experiment. Moreover, study sample replicates were not affected any 

differently than subject samples run on those digestion plates. 

 

 

Figure 3: Per-sample average relative quantitation as a function of digestion plate ID. 

 

Per-sample standard deviations of transition log-LH were also examined, where standard deviation was 

calculated as though the transitions were independent. The investigation was done independently for 

PQC samples, study samples and study sample replicates. This investigation allowed the identification 

of samples that behaved differently due to a subset of transitions only. It may also be a sign of suspicious 

transitions. If, for example, intensity values in a subset of transitions were suppressed in a digestion 

batch, the samples in that batch would have higher per-sample standard deviations of transition log-LH. 
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As above, there appeared to be within-run order effects, but no samples were identified as log-LH outliers. 

Nonetheless, sample processing variables related to instrument, analytical run and digestion plate ID 

appeared to have an impact on per-sample log-LH variability, by visual inspection. Figure 4 illustrates 

per-sample standard deviations as a function of digestion plate ID in the relative quantitation data set. 

This figure demonstrates that digestion plates had an effect on the peptide-to-peptide variability of light 

and heavy peak areas within samples, but the peptide-to-peptide variability in light-to-heavy area ratios 

remained relatively stable throughout the experiment. The first 3 digestion plates had slightly lower per-

sample variability, indicating that the light-to-heavy ratios of peptides measured in each sample 

processed in those batches were more similar to each other than in samples processed in subsequent 

batches, but this represented an approximately 7% change in peptide-to-peptide intensity variation. 

Moreover, study sample replicates were not affected any differently than subject samples run on those  

digestion plates: the variability between peptides in a study sample replicate was approximately 

equivalent to the subject samples run on the same digestion plate. 

 

Figure 4: Per-sample standard deviation in relative quantitation as a function of digestion plate ID. 
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To determine if there was a sample bias, such as samples of systematically higher or lower expression, 

sample boxplots were created, where each box represented the per-sample distribution of transition log 

LH. No samples stood out as distributional outliers. 

A principal component analysis (PCA) was applied to the doubly-centered log-LH. Double centering is 

the operation after which both sample and transition log-LH averages are 0.  

PCA’s cannot accept missing values. To overcome this shortcoming, a Probabilistic PCA (PPCA) method 

was used. A PPCA combines an Expectation-Maximization (EM) approach to PCA with a probabilistic 

model which is based on the assumption that latent variables and noise are normally distributed 

(Stacklies, et al., 2007). Such models can incorporate missing values. The modeling of PPCA assumes 

that missing values are missing at random. 

 

The number of principal components to retain was decided as 2 via a scree plot – which is a scatter plot 

of the explained variance (i.e. eigenvalue) by principal component. The number of components 

corresponded to the point of inflection in eigenvalues for the relative-quantitation (log-LH) PPCA. 

The components were visually inspected to assess the presence of any patterns in the PPCA. Because 

no outlier samples were flagged when evaluating per-sample detection rates, log-LH averages, log-LH 

standard deviations, or sample distributions, a new iteration excluding those samples was not performed 

to re-assess previously identified patterns in the PCA. A small number of outlier analytes were identified, 

which could all be traced to blood proteins HBA (hemoglobin subunit alpha), HBB (hemoglobin subunit 

beta), PRDX2 (peroxiredoxin), and SAMP (serum amyloid p-component). Removing these analytes and 

samples flagged as pink did not change the results shown below. 

A variance-component analysis (VCA) was performed to formally assess which SPVs had an impact on 

the data variance and principal components. This was done by fitting a linear model predicting retained 

principal component values with SPVs as predictors and performing model selection while optimizing the 

Aikaike Information Criterion.  Digestion plate ID and sample injection order had significant effects on 

variance components according to this analysis. 

A variance partition analysis (VPA) (Hoffman & Schadt, 2016) was performed to formally assess which 

of the SPVs had an impact on data variance. For this analysis, both principal components and transition 

log-LH were used as inputs. Digestion plate ID and run-order effects were nontrivial contributors to 

variance in both principal components and transition log-LH values. Figure 5 illustrates the percentage 

of variance in each component explained by each SPV in the relative quantitation data set. 
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Figure 5: Variance in relative-quantitated components explained by each SPV. 

 

 

Absolute Quantitation Data Set 

As with the relative quantitation data, an investigation was conducted to determine whether any samples 

were poorly detected. Figure 6 shows the per-sample detection rate for absolute-quantitation peptides 

separately for study samples and study sample replicates. In study samples, almost 100% of the peptides 

targeted were detected. 
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Figure 6: Per-sample absolute-quantitation detection rate. 

 

Because technical replicates of study samples were included in this dataset, it was possible to assess 

the degree of non-biological technical variability by comparing intensities of replicates to their study 

sample pair mate. As a measure of this type of variability, the table below provides the mean coefficient 

of variation (CV) between a study replicate and its study sample pair mate, expressed as a percentage. 

Table 1: Mean coefficient of variation between study replicate and study sample pair mate 

Protein analyte Mean %CV 

CMGA_HUMAN EDSLEAGLPLQVR_713.88_612.4 15.04823 

FABPH_HUMAN SLGVGFATR_454.26_707.4 14.76556 

NPTX2_HUMAN TNYLYGK_429.72_643.4 17.95823 

SCG2_HUMAN VLEYLNQEK_568.30_923.5 21.83761 

VGF_HUMAN THLGEALAPLSK_618.85_444.3 14.89699 

 

Per-sample average intensities were also evaluated for absolute-quantitation data. While no samples 

were identified as outliers, some sample processing variables like run order, instrument, analytical run, 

and digestion plate ID appeared to have an impact on average intensity levels by visual inspection. Figure 

7 illustrates average absolute intensities as a function of digestion plate ID.  
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Figure 7: Per-sample average absolute intensity as a function of digestion plate ID. 

 

Additionally, per-sample standard deviations in absolute intensities were examined as a function of SPVs. 

This provides an indication of whether SPVs affected a subset of peptide intensities. If, for example, the 

intensity of a single peptide was suppressed by digestion batch, the per-sample standard deviation would 

be increased for the samples processed in that batch. 

 

As above, no sample outliers were identified with respect to absolute intensity variability, but some 

sample processing variables like run order, instrument, analytical run, and digestion plate ID appeared to 

have an impact by visual inspection. Figure 8 is an example illustrating the effect of digestion plate ID. 
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Figure 8: Per-sample standard deviation of absolute intensity as a function of digestion plate ID. 

 

A principal component analysis (PCA) was applied to the doubly-centered log-LH. Double centering is 

the operation after which both sample and peptide absolute log-intensity averages are 0. To avoid issues 

with missing values and for consistency with the relative quantitation data set, a probabilistic PCA was 

used. The number of principal components to retain was decided as 2 via a scree plot. The components 

were then visually inspected to assess the presence of any patterns in the PPCA.  

Because no outlier samples were identified as outliers when evaluating per-sample detection rates, 

absolute log-intensity averages, absolute log-intensity variability, or sample absolute intensity 

distributions, a new iteration excluding those samples was not performed to re-assess previously 

identified patterns in the PCA. 

When absolute-quantitation data were analyzed in a VCA, digestion plate ID and sample injection order 

were the only SPVs with statistically significant effects on variance components. 
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Similarly, a VPA of absolute-quantitated peptides identified large effects of run order, digestion plate, and 

instrument ID on both principal components and individual peptide levels. Because digestion plates were 

only processed on a single instrument, any normalization for digestion plate ID would also correct for any 

inter-instrument differences as well. Figure 9 shows the percentage of variance in each principal 

component of absolute-quantitated intensities explained by each SPV. 

  

Figure 9: Variance of absolute-quantitated components explained by each SPV. 

 

Data Transformation for normalization and expression analysis 

For LH values that were replaced by 0, this replacement was considered as a flag and not as a value to 

use for analysis. The original peak integration value was used for analysis. 
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Normalization  

The Instrument, MS Plate, Run, and Injection Order were determined to have residual variance in the 

data.  The MS plate is confounded with Run and Instrument.  Injection order is a function of each run.  

Normalization that takes both plates and run order into account should also account for systematic 

differences between Instruments and Runs.   

 

The following normalization was applied to both the absolute and relative quantitative datasets 

separately.  The absolute quantitative data represents 5 protein transitions.  The relative quant data 

represents 502 transitions.  The PQC samples were replicated 24 times across the plates.  Additionally, 

there are 20 Subject samples with replicates randomized into different blocks. 

A) All calculations were performed in log2 units. “Raw” refers to pre-normalized data. “Norm” refers 

to the post-normalized data. 

B) Using the Raw data, the mean value was calculated across all samples for each transition.  

Samples with hemolysis were excluded from the mean.  These values were used in (D) to 

normalize plates 

C) For each run, a regression of transition values against run order was performed.  To account for 

plate differences, each plate had a separate offset in the regression.  After regression, the 

residual represented the variance not attributed to run order. 

a. Samples with hemolysis were not included in the regression but were corrected 

b. To maximize robustness, only transitions within 2 standard deviations of the mean were 

included in the regression 

c. Run 2 was split into two separate runs before and after instrument reset. 

D) The plate average was reset to be the same as the original global average (B).  Samples with 

hemolysis were corrected but not included in calculating the plate mean. 

 

Table 4 represents the quantitative results of normalization.  Simca-P 15 (Umetrics) was used to generate 

Partial-Least-Squared (PLS) Models utilizing the full matrix of transitions to predict the block effect 

variables.  The values in the table represent 7-fold cross validation R2 values.  Red Italic values were not 

statistically significant.  As previously demonstrated, the raw relative quantitative data had a stronger 

correlation with the block effects than the absolute quantitative data.  In all cases, the normalization 

removed the residual block effects in the data. 

 

Table 4: Model Cross-Validation R2 Outcomes of Normalization 

PCA/PLS: Outcome Raw Quant Norm Quant Raw Relative Norm Relative 

Instrument (class) 0.313 -0.0106 0.936 -0.325 

Injection-Number (continuous) 0.00911 -0.00757 0.706 -0.456 

Run (class) 0.226 -0.0111 0.729 -0.407 

 

PCA (Figures 10a-d) was performed on the raw and normalized data for both the absolute and relative 

quantitation data sets.  In general, the characteristics of the PCA plots were maintained pre and post 
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normalization. The replicated pairs were in close proximity and the PQC samples clustered around the 

center.  Samples that were outliers remained outliers.  In the relative quantitation pre-normalized plot, the 

PQC samples were tightly clustered with limited dispersion on PC1.  Post-normalization, the dispersion 

of the PQC samples looked much more like the absolute quantitation projections.  There was 

considerably more variance due to the block effects in the relative quantitation than the absolute 

quantitation data and its removal brought more qualitative parity between the relative and absolute 

quantitation datasets. 

 

 

Figure 10a: PCA Absolute Quantitation Pre-Normalization.  R999 represents the 24 PQC samples.  A810-A829 
represents the 20 pairs of replicated subject samples. 
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Figure 10b: PCA Absolute Quantitation Post-Normalization. 
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Figure 10c: PCA Relative Quantitation Pre-Normalization. 
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Figure 10d: PCA Relative Quantitation Post-Normalization. 

 

Comparisons were made between pre- and post-normalization sets regarding the reproducibility of the 

PQC samples and the replicated subject samples. For the PQC samples, the average Z value across 

transitions was tabulated.  For the replicated pairs, the root mean square differences were tabulated 

(Table 5).  In general, normalization improved the average reproducibility of the data but the gains were 

small.  The large sample size for this project contributed to the block effects, which were small in 

magnitude, being statistically significant.  Since all the timepoints for a subject were run within half a plate, 

the run order block effects would be minimal and shifting plate means would have no effect on tabulating 

changes from baseline. The normalization may have minor impact on cross sectional comparisons of 

sample groups that span plates and runs. Both the raw and normalized data have been included in the 

uploaded dataset.   
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Table 5: Reproducibility of replicated samples before and after normalization 

 Average Z 

PQC Samples Raw Norm 

Absolute 0.04 0.05 

Relative 0.6 0.4 

 Average RMSE 

Replicates Raw Norm 

Absolute 0.43 0.3 

Relative 0.78 0.74 
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Appendix 1 
 

FNIH Biomarkers Consortium 
 

Statistical Analysis Plan 
 

Biomarkers Consortium CSF Proteomics Project 
 

1. INTRODUCTION 

The project aims to qualify candidate Alzheimer’s disease (AD) biomarkers using cerebrospinal fluid (CSF) 

samples from Alzheimer’s Disease Neuroimaging Initiative (ADNI). Previously completed stages led to the 

identification of several polypeptide analytes with potential diagnostic or predictive utility. The current proposal 

aims to explore within subject changes in the five most promising potential biomarkers over time at various stages 

of the illness. The five analytes under study—1) chromogranin-A (CgA); 2) neural pentraxin 2 (NPTX2); 3) 

neurosecretory protein VGF; 4) secretogranin-2 (SCG2); and 5) fatty acid binding protein 3 (FABP3)—are 

derived both from comparisons of baseline values in controls, “progressing and non-progressing” mild cognitive 

impairment (MCI) and Alzheimer’s disease (AD) subjects, as well as published reports from longitudinal 

analyses.  

Ultimately, our goal is to identify analytes whose abundance exhibits intra-individual trajectories that correspond 

to the individual’s disease progression, which may lead to the discovery of novel biomarkers with utility as 

supportive endpoints in clinical trials of early AD.  

1.1. Study Objectives 

Primary 

The primary objective of this study is to retrospectively investigate the longitudinal changes in the estimated abundance 

of the five candidate analytes (CgA, NPTX2, VGF, SCG2, and FABP3) in individuals from the ADNI cohort at various stages 

of the disease including cognitively normal (NL), and mildly cognitively impaired (MCI) subjects. 

Secondary 

The secondary objectives are to retrospectively compare the rates of longitudinal change of the five candidate 

proteins (CgA, NPTX2, VGF, SCG2, and FABP3) between subpopulations of the ADNI cohort defined by: a) p-

Tau/Aβ status at baseline; and b) progressors vs. non-progressors.  
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1.2. Study Design 

The participants in this study are a subset of the ADNI I, II, GO Cohorts, who have had a minimum of three longitudinal 

CSF collections and clinical assessments. The participants range across the disease spectrum from those diagnosed as 

cognitively normal (NL) to those diagnosed as MCI and AD, as defined in ADNI. They include 80 NL, 114 EMCI+MCI and 4 

AD subjects; each with a minimum of three longitudinal CSF collections and clinical assessments. A total of 750 samples 

were distributed into 21 randomization blocks. The randomization blocks were allocated to plates (2 blocks per plate), 

which were run in sequence using two different mass spectrometers. Additional QC samples, (n=20) composed of 

replicates of 20 study samples, were interspersed across blocks. All longitudinal samples for a subject were allocated in 

the same block in a random order. The validity of this assumption can be tested after the data become unblinded. 

 

Data used in the analyses described in this document are based on experiments conducted by Caprion Biosciences. These 

experiments involved an MRM assay developed in-house to estimate absolute abundance of the five specified analytes 

(CgA, NPTX2, VGF, SCG2, and FABP3). The abundance was estimated using a single transition selected out of two assayed. 

The rules for selecting transitions, data-processing steps including normalization and corrections for run effects, etc., are 

described in the Data Primer (Reference). The final normalized analysis dataset will be used to carry out the analyses. 

Additional data available in ADNI for these subjects, such as demographic information, clinical assessments, and biomarker 

results, will also be used as specified in the analyses. 

 

1.3. Statistical Hypotheses for Trial Objectives 

Statistical analyses will be carried out separately for each of the five proteins (CgA, NPTX2, VGF, SCG2, and 

FABP3). There are two families of hypotheses: 

1. The null hypotheses for the primary family of analyses state that for a given analyte and each diagnostic 

group (NL, EMCI+MCI), there are no significant changes in the analyte’s abundance over time (i.e., the 

rate of change from baseline is zero). The alternative is that the rate of change associated with the given 

analyte is significantly different from zero within a given diagnostic group. Both positive and negative 

rates of change will be examined, as the abundance of relevant analyte may increase or decrease with 

increasing pathology. We will also compare the rates of change from baseline in analyte abundance 

between sets of individuals defined by the three diagnosis groups (NL, EMCI+MCI), with the statistical 

null hypotheses that there is no significant difference between the rates of change for subjects in the three 

diagnosis categories. The alternative hypothesis is that, for a given analyte, the rate of change in one 

diagnostic group is significantly different from another group. 
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2. The statistical null hypotheses for the secondary family of analyses state that there is no significant 

difference between the rates of change within each of the groups—NL and EMCI+MCI—for participants 

classified by the following criteria: 

a. baseline p-Tau/Aβ ratio > 0.025 (positive) versus baseline p-Tau/Aβ ratio ≤ 0.025 (negative) 

b. baseline diagnosis of NL (EMCI+MCI) followed by a diagnosis of EMCI+MCI (AD) obtained 

within 4 years following the baseline assessment (progressors) versus baseline diagnosis of NL 

(EMCI+MCI) followed by the same diagnosis obtained during all clinical assessments carried out 

within 4 years (assuming there is at least one such assessment) following the baseline assessment 

(non-progressors). 

The alternative hypothesis is that the difference in rates of change from baseline in the protein’s abundance 

between pairs of the subgroups defined above is significantly different from zero. 

The primary and secondary endpoint is the change from baseline of the estimated abundances of each of the five 

candidate proteins. The summary measures are the estimate of the rate of change in the form of a linear slope for 

each disease stage (primary), and estimate of the difference between slopes for pairs of cohorts (i.e., progressors 

versus non-progressors and p-Tau/Aβ ratio positive versus negative) at each disease stage (secondary).  

1.4. Sample Size  

Sample sizes were limited to participants in the ADNI cohort with a minimum of three CSF sample 

collections and clinical assessments.  

1.5. Randomization and Blinding 

To minimize experimental effects such as run-order effects, the following randomization requirements were 

provided to the ADNI team providing the CSF samples, regarding the experimental design: 

I. Longitudinal samples from a given subject are to be run on the same plate but randomized across the 

plate. 

II. Stratified (by column) randomization of the subjects by disease stage and amyloid status (NC-Aβ 

positive, NC-Aβ negative, MCI-Aβ positive, MCI-Aβ negative, and AD) is to be carried out.  

III. Samples are to be randomly assigned to run order. 

Note that subsequent to these requirements, the experimental plan was changed.   

The original study randomization was performed by Les Shaw’s group at UPenn and was based on a sample processing 

workflow, which included a CSF depletion step. The 750 CSF samples were split into groups of 36 samples with all 

longitudinal samples from an individual contained within the same group (called run01, run02 etc.). Eleven (11) runs were 

planned to be depleted using one IgY14/Supermix depletion column and ten (10) runs were to be depleted using a second 
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depletion column. Based on further assay development, the depletion step was deemed unnecessary and was eliminated 

from the sample processing workflow. A modified workflow involved four runs using two 6500 QTRAP instruments instead. 

The group assignment and injection order described in the initial randomization scheme were preserved. The 

randomization groups were divided into the four runs as described below: 

 

Caprion Run Batch size Instrument 

 

UPenn Randomization Designation 

 

Run 01  186 U run01-run05 (depletion column 1) 

Run 02 186 Z run06-run10 (depletion column 1) 

Run 03 180 U run11 (depletion column 1) and run01-run04 (depletion column 2) 

Run 04 222 Z run05-run10 (depletion column 2) 

 

All project team members remain blinded to the participant IDs in ADNI. Thus, experimental data cannot be 

linked to demographic, clinical or other biomarker data for the participants until the experimental data is uploaded 

to the ADNI website. 

2. SUBJECT INFORMATION 

Subject demographics, and baseline disease characteristics will be summarized using descriptive statistics.  

2.1.1. Baseline Demographic Characteristics  

Table 1 lists the demographic variables that will be summarized. 

Table 1: Demographic Variables 

Continuous Summary Type 

Age (years) - Descriptive statistics (N, mean, standard deviation, median, 

and range [minimum, maximum]). 

 

Weight (kg) 

Height (cm) 

 

 

 

Categorical  

Age ([18-25 years, 26-50 years, 51-64 years, and 65-74, and 

≥74 years]) 
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Sex (Male, Female, Unknown) - Frequency distribution with number and percentage in each 

category 

 

Race (American Indian or Alaska Native, Asian 

Black or African American, Native Hawaiian or Other Pacific 

Islander, White, Other, Multiple, Not reported, Unknown) 

Ethnicity (Hispanic or Latino, Not Hispanic or Latino, 

Unknown, Not Reported) 

Marital status (Single, Married, Divorced, Separated, Widowed, 

Not reported) 

Educational level (9-12 years, College, Not Reported) 

 

2.1.2. Baseline Clinical Characteristics 

Table 2 lists the baseline disease characteristics that will be summarized for the Analysis set. 

Table 2: Baseline Disease Characteristics 

Categorical  

Diagnosis at baseline (NL, EMCI+MCI, AD) - Frequency distribution with number and percentage in each 

category 

 

p-Tau/Aβ ratio (> 0.025, ≤ 0.025)  

ApoE4 status (Carrier, Non-carrier) 

Diagnosis at baseline for subjects with p-Tau/Aβ ratio > 0.025 

and ≤ 0.025 

Diagnosis at baseline for subjects with ApoE4 carriers and non-

carriers 

 

2.1.3. Clinical Characteristics 

Table 3 lists the additional disease characteristics that will be summarized for the Analysis set. 

Table 3: Disease Characteristics 

Categorical  

Number of NL -> EMCI+MCI progressors - Frequency distribution with number and percentage in each 

category 

 

Number of EMCI+MCI -> AD progressors  

Number of progressors in each group with p-Tau/Aβ ratio > 

0.025 and ≤ 0.025 

Number of progressors in each group who are Apoe4 carriers 

and non-carriers 
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2.2. Disposition Information 

The following information will be reported: (i) the number and percentage of subjects in the analysis population 

at baseline, year 1, 2, 3, … max after baseline clinical assessment (ii) the number and percentage of subjects who 

completed a clinical assessment and provided a CSF sample at baseline and at year 1, 2, 3,… max after baseline 

visit, (iii) median, range and inter-quartile range of the number of years between subjects’ baseline and final CSF 

collection and clinical assessment. 

3. ANALYSIS DEFINITIONS & SPECIFICATIONS 

The full analysis set (FAS) will be defined as all participants with a minimum of three CSF sample collections 

and clinical assessments. 

Subgroups will be defined as follows: 

(i) Diagnosis at baseline (NL, EMCI+MCI) 

(ii) p-Tau/Aβ ratio > 0.025 versus p-Tau/Aβ ratio ≤ 0.025 

(iii) progressors vs. non-progressors (as defined in section 1.3.) 

Study Day 1 or Day 1 refers to the day of the Baseline CSF assessment. All assessments at all visits will be 

assigned a day relative to this date. Study day or relative day for a visit is defined as: visit date - (date of Day 1) 

+1, if visit date is ≥ date of Day 1; visit date - date of Day 1, if visit date < date of Day 1. There is no Day 0. 

Baseline is defined as the first CSF and clinical assessment. Endpoint is defined as the last available postbaseline 

CSF and clinical assessment. 

The primary objective of this study is to retrospectively investigate the longitudinal changes in the estimated 

abundance of the five candidate proteins (CgA, NPTX2, VGF, SCG2, and FABP3) in individuals from the ADNI 

cohort at various stages of Alzheimer’s disease from cognitively normal (NL), mildly cognitively impaired 

(EMCI+MCI) to dementia (AD). The secondary objectives are to retrospectively compare the rates of longitudinal 

change of the five candidate proteins (CgA, NPTX2, VGF, SCG2, and FABP3) between subpopulations of the 

ADNI cohort defined by: a) p-Tau/Aβ status at baseline; and b) progressors versus non-progressors.  

The primary analysis will employ a Linear Mixed Effects (LME) modelling methodology, with fixed effects 

including the baseline abundance, diagnosis at the given time point (NL, EMCI+MCI as a factor), sex, ApoE ε4 

carrier status, education level, age at study entry, time point (as a continuous variable), and the time by diagnosis 

interaction. Subject will be included as the random factor. Other variables may be included as appropriate. The 

coefficients associated with each diagnostic category, and the diagnosis-by-time interaction, with the 

corresponding 95% confidence intervals will be estimated.  
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The secondary analysis will also fit an LME model to the data, with fixed effects including the baseline estimated 

protein abundance, p-Tau/Aβ ratio positivity (as a factor), progression status, diagnosis (NL, EMCI+MCI as a 

factor), sex, ApoE ε4 carrier status, education level, age at study entry, time point (as a continuous variable), and 

the time by disease stage interaction. Subject will be included as a random factor. Other variables may be included 

as appropriate. The coefficients associated with p-Tau/Aβ ratio positivity and progression status, their interaction 

with time, and the appropriate interactions will be estimated with the corresponding 95% confidence intervals. 

Results will be presented in the form of tables and graphs. One table will contain the demographic and clinical 

characteristics of the analysis sample using variables and summary statistics detailed in sections 2.1.2. Additional tables 

will describe the model estimates and 95% confidence intervals associated with the primary and secondary endpoints. For 

each protein, graphs will depict the estimated linear trajectories (with 95% confidence bands) of protein abundance 

associated with the three diagnosis categories (NL, EMCI+MCI). A second set of graphs will show the estimated linear 

trajectories (with 95% confidence bands) associated with each subgroup (progressors vs. non-progressors, p-Tau/Aβ ratio 

positive vs. negative) and each diagnosis category (NL, EMCI+MCI). Graphs of profile plots of individual trajectories will 

also be depicted. All the hypothesis tests specified here are two-sided. If a p-value is ≥ 0.05, then the comparison 

associated with this p-value will be declared not statistically significant, otherwise if the p-value is < 0.05, then the 

comparison associated with this p-value will be declared statistically significant.  

  

 


