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Summary: Tensor-based morphometry (TBM) is an image analysis technique that 
computes the locations and rates of tissue atrophy in the brain from the gradients of the 
deformation fields used to align one image to another. TBM may be applied to cross-
sectional MRI data for local volumetric comparisons between two or more groups of 
subjects, based on nonlinearly registering individual brain scans to a common anatomical 
template. Moreover, when TBM is applied to a longitudinal MRI study, the derived 
Jacobian maps reflect the percentage of tissue change over time. We use two separate 
classes of registration methods that we developed at UCLA, both driven by a mutual 
information (MI) cost function. Different regularizing functions are used, which affect 
the spatial covariance of the deformations. For our cross-sectional studies [1, 2], we use a 
method we developed, termed “3DMI” [3], which utilized a regularizing term based on 
the Cauchy-Navier linear elasticity operator. In our longitudinal studies [4, 5], we use a 
related algorithm that we developed, termed “sKL-MI”, using the symmetrized Kullback-
Leibler (sKL-MI) distance to regularize the deformation [6, 7].  
 
 
Methods: 
 
Image Download 
Brain MRI scans were downloaded from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) public database (http://www.loni.ucla.edu/ADNI/Data/). All 
downloaded images were processed with a processing pipeline at the Mayo Clinic, 
consisting of GradWarp [8], “B1-correction” [9], “N3” bias field correction [10], and 
geometrical scaling [9].  
 
Image Pre-processing 
To adjust for global differences in position and scale across subjects (cross-sectional), 
individual scans were linearly registered to the International Consortium for Brain 
Mapping template (ICBM-53) [11] using 9-parameter (9P) registration, driven by a 
mutual information (MI) cost function [12].  
 



To adjust for linear drifts within the same subject (longitudinal), the follow-up scan was 
linearly registered to its matching baseline scan using 9P registration.  Both mutually 
aligned scans were then linearly registered to the ICBM-53 by applying the same 9P 
transformation.  
 
Globally aligned images were re-sampled into an isotropic space of 220 voxels along x-, 
y- and z-dimensions with a final voxel size of 1 mm3. 
 
Unbiased Group Average Template - Minimal Deformation Target (MDT) 
A minimal deformation target (MDT) was created based on 40 randomly selected normal 
subjects to serve as an unbiased average template image. To construct an MDT, the first 
step was to create an initial affine average template, by taking a voxel-wise average of the 
9P globally aligned scans after intensity normalization. In the second step, a non-linear 
average template was built after warping individual brain scans to the affine template 
using 3DMI. A non-linear average intensity template was then derived from the mean of 
the 40 deformed scans that had been non-linearly registered toward the affine average 
template. In a final step, the MDT was generated for the normal group by applying 
inverse geometric centering of the displacement fields to the non-linear average.  
 
TBM and three-dimensional Jacobian Maps  
To quantify 3D patterns of volumetric tissue differences in cross-sectional data, all 
individual brain images were non-linearly aligned to the MDT for the normal group, 
using 3DMI. For each subject, a separate Jacobian matrix field was derived from the 
gradients of the deformation field that aligned that individual brain to the MDT template. 
The determinant of the local Jacobian matrix was derived from the forward deformation 
field to characterize local volume differences. Color-coded Jacobian determinants were 
used to illustrate regions of volume expansion, i.e. those with ( ) 1det >rJ , or contraction, 
i.e., ( ) 1det <rJ  [13-18] relative to the normal group template. As all images were 
registered to the same template, these Jacobian maps share a common anatomical 
coordinate defined by the normal template.  
 
To quantify 3D patterns of atrophic rates in longitudinal data, individual Jacobian maps 
were derived from the deformation field warping the follow-up scan to match the 
baseline scan of the same subject, using sKL-MI. The inter-subject displacement vector 
field, obtained from the above step, was then applied to transform the Jacobian (i.e., local 
expansion or contraction) map of each subject to the brain coordinates defined by the 
MDT. Spatial normalizations among different brains enable regional comparisons and 
group analyses to be performed. 
 



3DMI and sKL-MI interpolate the deformation into white matter regions in slightly 
different ways. Please refer to our recent publications for detailed comparisons of the two 
TBM algorithms [5, 6, 19-23].  
 
Regions of interest (ROIs) and mean atrophy rate 
Both anatomically and statistically-defined ROIs are used in our studies. First, a temporal 
lobe ROI, including the temporal lobes of both brain hemispheres, was manually 
delineated on the MDT template by a trained anatomist using the Brainsuite software 
program [24]. Secondly, a statistically-defined ROI (stat-ROI) was defined based on 
voxels with significant atrophic rates over time (p < 0.001) within the temporal lobes, in 
an independent training set of 22 AD patients [5].  A separate stat-ROI was generated and 
applied for each TBM design with different algorithms, 3DMI versus sKL-MI.   
 
A numeric summary – the mean atrophy rate for all voxels with in the ROI – was 
computed for each person, to summarize annual change within the ROI.  
 
Image processing steps were submitted to a computing cluster using the LONI Pipeline 
Processing Environment which allows parallelization of multiple tasks [25].  
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